Module Handbook

Module Name:	Basic Physics		
Module Level:	Bachelor		
Abbreviation, if applicable:	Lecture FID101		
	Practical Work FID102		
Sub-heading, if applicable:			
Courses included in the			
module, if applicable:			
Semester/term:	1 / First year		
Module coordinator(s):	Dr. Suko Hardjono, Apt., MS		
Lecturer(s):	Drs. Siswanto, M.Si.		
	Supadi, S.Si., M.Si		
	Dr. Khusnul Ain		
	Dr. Suko Hardjono, Apt., MS		
	Dr. Nuzul Wahyuningdyah, Apt., MS		
	Dr. Bambang Tri Purwanto, Apt., MS		
Language:	Bahasa Indonesia		
Classification within the	Compulsory Course/Elective Studies		
curriculum:			
Teaching format/class hours	Lecture		
per week during the semester:	100 minutes lectures, 13 lecture classes/semester		
	Practical Work		
	100 minutes practical work classes, 13 practical work classes		
	/semester		
Workload:	Lecture		
	Total 22 hours a semester		
	Practical Work		
	Total 22 hours a semester		
Credit Points:	Lecture		
	2		
	Practical Work		
Requirements:			
Learning goal/competencies:	Knowledge		
	- To understand the concept of measurement; and		
	basic concepts and principles in basic physics.		
	Skills		
	 Discipline, honesty, and skilled. 		
	Competence		
	- To understand and able to apply the concept of basic		
	theories of physics.		
	 To understand and able to apply the the basic 		
	concepts of physics, including the use of equipment		
	in accordance with the basic concepts of physics in		
	question, measure and interpret data and prepare		
	reports measurement results of practical.		
Content:	Lecture		
	Introduction, fluid mechanics, heat, waves and optics,		
	modern physics, electricity and magnetism		

	Practical Work Measurement of the length expansion, surface tension and liquid viscosity, sound rate with resonance tube, microscopic diameter and numerical aperture microscope, refractive index and the wavelength, coefficient of Geiger Muller tubes, oscilloscope and determines the focus distance of the lens
Study/exam achievements:	Lecture Student are considered to be competent and pass if at least get 50% of maximum mark of the exams based learning. Final score (NA) is calculated as follow : 50% Exam I + 50% Exam II
	Final index is defined as follow : A : 100 > NA > 75 AB : 75 > NA > 70 B : 70 > NA > 65 BC : 65 > NA > 60 C : 60 > NA > 55 D : 55 > NA > 50 E : 50 < NA
	Practical Work Student are considered to be competent and pass if at least get 50% of maximum mark of the exams based learning. Final score (NA) is calculated as follow :
	50% Exam I + 50% Exam II Final index is defined as follow : A : $100 > NA > 75$ AB : $75 > NA > 70$ B : $70 > NA > 65$ BC : $65 > NA > 60$ C : $60 > NA > 55$ D : $55 > NA > 50$ E : $50 < NA$
Forms of Media:	OHP and LCD projector
Literature:	 Atkins, P 6 de Paula J 2006, <i>Physical Chemistry for the Life Science</i>, W.H. Freeman Publishers, Oxford. Chang R., 2007, <i>Chemistry</i>, 10th Ed, McGraw-Hill Book Company,
	 New York 3. Connors, KA & Mecozzi, S 2010, <i>Thermodynamics of Pharmaceutic-at Systems An Introduction to Theory and Applications, 2nd Ed</i>, John Wiley & Sons, Inc., Hoboken. 4. Florence, AT & Attwood, D., 2006, <i>Physicochemical Principles of Pharmacy</i>, 4th Edition, Pharmaceutical Press, London 5. Levine, IN 2009, <i>Physical Chemistry</i>, 6th Edition, McGraw-Hill Book Company New York. 6. Maron, SH & Lando, JB 1974, <i>Fundamental of Physical Chemistry</i>, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74
	Chemistry, 1st Edition, McMillan Publishing Co., New York.

	7.	Mortimer, RG 2008, <i>Physical chemistry</i> , 3rd Edition, Elsevier Inc., Burlington.
	8.	Sinko, PJ, Singh Y, 2011, Martin's <i>Physical Pharmacy and</i> <i>Pharmaceuticals Sciences</i> , 6th Edition, Lippincott Williams & Wilkins, Philadelphia,
	9.	Zumdahl, SS, Zumdahl SA, 2007, <i>Chemistry</i> , 7th Edition, Houghton Mifflin Company, Boston.
Notes:		